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Abstract. Second-order optimality conditions are studied for the constrained optimization problem
where the objective function and the constraints are compositions of convex functions and twice
strictly differentiable functions. A second-order sufficient condition of a global minimizer is obtained
by introducing a generalized representation condition. Second-order minimizer characterizations for
a convex program and a linear fractional program are derived using the generalized representation
condition.
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1. Introduction

It is well known that the convex composite model problem includes most of non-
linear optimization problems in the literature, see Burke and Poliqun (1992), Ioffe
(1979), Jeyakumar and Yang (1993) and Rockafellar (1988). Second-order suffi-
cient conditions of a strict local minimizer for convex composite problems have
been given in Burke and Poliqun (1992) and Rockafellar (1988) by enforcing the
inequality in the necessary condition part to be a strict inequality on a larger critical
direction set. It has been shown that second-order sufficient conditions of a strict
local minimizer for nonlinear programming problems are useful in establishing
convergence properties of nonlinear programming algorithms.

The optimality conditions for a global minimizer is important, e.g., in noncon-
vex (concave) optimization, see Horst and Tuy (1990). It is known that for a convex
optimization problem any stationary point is also a global minimizer. Some first-
order global optimality conditions for (multi-objective) convex composite prob-
lems have been given in Jeyakumar and Yang (1993) by virtue of a (first-order)
representation condition. The question is how to characterize the second-order
global sufficient condition of a minimizer for a nonconvex optimization problem.
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Recently a second-order global sufficient condition has been established for a con-
vex composite optimization problem with an extended real-valued convex function
in Yang (1998).

In this paper, second-order optimality conditions are studied for the constrained
convex composite optimization problem where the objective function and con-
straints are compositions of convex functions and twice strictly differentiable func-
tions. A second-order sufficient condition of a global minimizer for a constrained
convex composite optimization problem is given by using a generalized representa-
tion condition. We show that this generalized representation condition is also useful
in characterizing the minimizer sets for a convex program and a linear fractional
program. In particular, for a convex quadratic program, we obtain an equivalent
condition to the one given in Burke and Ferris (1993).

The outline of the paper is as follows. In Section 2, second-order optimality
conditions for a convex composite optimization problem is discussed and a gen-
eralized representation condition is also presented. In Section 3, a second-order
global sufficient condition for a constrained convex composite optimization prob-
lem is given. In Sections 4 and 5, second-order minimizer characterizations for a
convex program and a linear fractional program are derived using the generalized
representation condition, respectively.

2. Preliminary results

Let IR" denote an n-dimensional space, and (u, v) denote the inner product of
vectors u, v € IR". Let g : R" —> IR U {+00} be a lower semi-continuous convex
function. The convex conjugate of g is defined by

g (") =sup{(y*.y) —g(y) : y e R"}, y'eR”,

thus
Oy <gly)+g k"), Vy € dom(g),y* € IR",

where dom(g) = {y € R" : g(y) < +oo}. The convex subdifferential of g at
y € dom(g) is defined by

dg(y) ={y" e R": (y", —1) € N(y, g(y)lepi(g))}.

where epi(g) is the epi-graph of g, i.e.,

epi(g) ={(y,a) e R" xR : g(y) < a},

and the normal cone to convex subset epi(g) of IR" at (v, g(y)) is defined by

N((y,g())lepi(g)) = {z" € R" x R : (z",z = (¥, g(¥))) < 0, Vz € epi(g)}.
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If g is finite at y and y* € dg(y), then

g(z) 2 g+ z—y), Vz € dom(g).

Let f : IR" — IR be a locally Lipschitz function and let x, u, v € IR". The
(Clarke) generalized second-order directional derivative of f at x in the direc-
tions (u, v) and the generalized Hessian of f at x with respect to u is defined in
Cominetti and Correa (1990), respectively, by

£ (x: . v) = lim sup fOAsutn) = fO+suw) - fO+m) +F0)

y—x,s5,t0 st

P f(x)(u) = {x* € R": f*°(x; u,v) = (x*,v), Vv € R"}.

A function f : R" —> IR is said to be C"! if it is continuously differentiable
with a locally Lipschitz gradient. See Hiriart-Urruty et al (1984) and Yang and
Jeyakumar (1992).

The function f : IR" — IR is said to be twice strictly differentiable at x € IR"
if there exists a linear operator D*f(x) : R" — IR" such that

lim fy+su+tv) = f(y+su)— f(y+1v)+ f(y)

y—=>x,5,t}0 st

= <D2f(x)u’ U),

for all u,v € R". It is clear that the correspondence between linear operators
from IR" to IR" and n x n symmetric matrices is one-to-one, see Hiriart-Urruty
et al (1984). Thus second-order strict derivative D*f(x) of f at x is an n x n
symmetric matrix. F = (F,,---,F,) : R" — IR" is said to be twice strictly
differentiable at x if each component F; is twice strictly differentiable at x. All
linear and quadratic functions are twice strictly differentiable. A twice strictly
differentiable function is C"!. It is clear that the generalized Hessian 0*f (x)(u)
is singleton for each u € IR" if and only if f is twice strictly differentiable at x.
Consider the convex composite optimization problem

(CP) Minimize f(x)

subjectto x € IR”,

where f(x) =g(F(x)), g : R" — IR U {+0o0} is a lower semi-continuous convex
function, and F : IR" — IR"™ is continuously differentiable. If F' is twice strictly
differentiable near a given point, the Jacobian of F at x, VF(x) is an m X n matrix,
second strict derivative D?F,(x) is an n x n matrix for each i = 1,---, m and
D?*F(x) = (D*F,(x)",---,D?F,(x)T)T.



274 X. Q. YANG
As in Burke and Poliquin (1992), let

L(x,y") = (y", F(x)) —g"(y"), y* € dom(g"),
K(x) ={ueR": g(F(x)+tVF(x)u) < g(F(x)), forsome ¢ > 0},
Ly(x) = {y* € R": y" € dg(F(x)), VF (x)"y" = 0}.

L, (x) is known as the set of optimal multipliers and K (x) is the critical cone. Note
that L(x, y*) is continuously differentiable as a function of x.

The function f(x) = g(F(x)) is said to satisfy the basic constraint quali-
fication at a point x satisfying F(x) € dom(g) (Rockafellar (1988)) if the only
point w € N(F(x)|dom(g)) for which 0 € w"dF(x) is w =0, and dF (x) is the
generalized Jacobian of F at x, see Clarke (1983). We see that L,(X) is compact
and that if x satisfying F(X) € dom(g) is a local minimizer of (CP) at which
the basic constraint qualification holds, then L,(X) # ¢ (see Burke and Poliquin
(1992)).

The following are second-order necessary conditions for (CP). See Yang (1998).

THEOREM 2.1. Consider the problem (CP). Let F (X) € dom(g). If F is continu-
ously differentiable and X is a local minimizer of (CP) at which the basic constraint
qualification holds, then Ly(X) # @ and

max{L**(x, y*; u,u) : y* € Ly(x)} = 0, Yu € K(X). (1)

Furthermore if F is twice strictly differentiable at X, then

max{Y_ yu' D’F,(X)u: y* € Ly(X)} = 0, Yu € K(X). (2)
i=1

The following generalized representation condition can be used to establish a
second-order sufficient condition of a global minimizer.

DEFINITION 2.1. Let M C IR" be a set and F : R" —> R* be twice strictly
differentiable at x. We say that a generalized representation condition /olds for
F at X with respect to M if for every x € R", there exists n(x,x) € M such that

F(x)=F(x)+ VF(x)(x —x) + %‘r](x, X)"D*F(%)n(x, X) (3)

where

n(x, X)" D*F, (¥)n(x,X)
n(x, O DFE)n(x, %) = :
n(x,%)" D*F (X)n(x, X)
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PROPOSITION 2.1. Let M, C M,. If (3) holds for F at x with respect to M,, then
the generalized representation condition (3) holds for F at X with respect to M,.

The following propositions summary properties of the generalized represent-
ation condition (3) (see Yang (1998)) and will be used in the sequel to establish
solution characterizations for quadratic programming and linear fractional pro-
gramming problems.

PROPOSITION 2.2. Any quadratic function satisfies the generalized representa-
tion condition (3).
Proof. See Example 3.3 in Yang (1998).

PROPOSITION 2.3. Any linear fractional function satisfies the generalized rep-
resentation condition (3).
Proof. Let

where a, b, x € R" and r, s € R satisfying b” x 4+ s > 0. From Yang (1998), we have

109 = @+ -+ 3 T
Let

_ bTx +s .
n(x,X)=,/m(x—X)- 4)

Then the generalized representation condition (3) is satisfied.

(x—%)"Vf(X)(x—%), x,XeD,.

3. A second-order global sufficient condition

In this section we obtain second-order optimality conditions of a constrained op-
timization problem where the objective function and the constraints are composi-
tions of convex functions and twice strictly differentiable functions by transforming
it into a convex composite optimization problem.

Let C be a closed convex set of R", g; : RfF—R,i=0,1,---,mbe convex
functions, F, = (F,,---,F,;)" :IR" — IRY,i = 0,1,---, m be twice strictly

differentiable functions. Let

A={x:x€C,g(F(x)<0,i=1,---,m},
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Consider the following optimization problem

(P1) Minimize g,(F,(x))

subject to x € A.

The first-order optimality conditions for the problem (P1) where F; is Gateaux
differentiable only have been derived in Jeyakumar and Yang (1993).
The Slater constraint qualification of (P1) is said to hold if

dx, € intC, g;(F.(x,)) <0,i=1,---,m. Q)

Problem (P1) is said to be calm at a point X if there exists M > 0 such that for any
we = (g5 ooty ) € RY with || — 07 (namely, [lug]| # 0 and [|u, || — 0),
for any x, satisfying g,(F;(x;)) <u,;,i=1,...,m and x, — X, there holds

f(x) = f(®)

+ M >0, Vk,
o |

where f = g,(Fy(x)).

From Corollary 2 in page 238 of Clarke (1983) and from Proposition 6.4.2 again
in Clarke (1983) it follows that if C is bounded and (5) holds, then the problem (P1)
is calm at a minimizer. Suppose that X is a minimizer of (P1) and the problem (P1) is
calm at x. By Proposition 6.4.3 in Clarke (1983), there exists M > 0 such that X is
a minimizer of the optimization problem

Minimize f,(x)

subject to x € C,

where f;(x) = go(Fo(x)) + M 3", max{0, g,(F;(x))}.

Let
D =C xR xIRF x ... x IR, (6)
8(z) = 8(x, 20,215+ Z)
_ {go(Zo) + MY " max{0, g(z,)}, z € D,. )
o0, otherwise,
F(x) = (x", Fy(x)", Fy(x)", -+, F,(x)")", xeR" (8)

Then f,(x) = g(F(x)). From the convexity of g, and the monotonicity of
m(r) = max{0, r} as a function of r, it is easy to see that g is a lower semi-
continuous convex function with dom(g) = D. The function F is twice strictly
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differentiable. Then the problem (P1) is formulated as a convex composite optim-
ization problem (CP) with g and F defined by (6)-(8). This composite problem is
denoted by (CPP). Let K pp(x) be the critical cone of (CPP). We have VF(x) =
(1, VFy(x)", VF (x)T, -+, VF,(x))T.

nxn?’

LEMMA 3.1. Let x € A. Then
Kepp(X) = {u € cone(C —%) : Vi e I(x) U {0},
T, € dg,(Fi(X)), v/ VF,(xX)u < 0}, )
where 1(x) = {i: g;,(F;(x)) =0,i=1,---,m} is the active constraint index set.
Proof. The vector u € Kpp(x) if and only if

g(F(X)+tVF(X)u) < g(F(x)), forsome t > 0,

thus
g(x + tu, Fy(x) + tVFy(X)u, F,(x) + tVF,(X)u, - - -,
F,(X) + tVF,(X)u) < g(%, Fy(X), F (%), -+, F,(X)).
Then u € cone(C —X) and

8o (Fo (%) + tVEy(X)u) — go(Fy(X))

m

+ MY max{0, g;(F;(x) + tVF,(x)u)} <0, for some ¢ > 0.

i=1

This is equivalent to
u € cone(C —X),
8o(Fo(¥) + 1VFy(X)u) — go(Fy(¥x)) <O, (10)
max {0, &(F(x) + tVF,(X)u)} <0, Viel(). (11)

From the convexity of g,, there exists v, € dg,(F,(x)) such that
ol V(R < go(Fol(®) + 1VFy(F)u0) — go(Fy(()).
Thus (10) is equivalent to
ve VFy(¥)u <0, v, € dgy(Fy(X)).
By the same arguments, (11) is equivalent to
v/ VF,(x)u <0, Jv, € dg,(F,(x)), Vi € 1(%).

Hence (9) holds. O
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LEMMA 3.2. Let x € A. The following holds

dg(F (X)) = N(x[C) x dg,(Fy(x)) x IL;; {0} x
Hiel(f){Maiy;'k 1y € dgi(Fi(X)), a; € [0, 1]}, (12)

where X is the product of sets in a product space. The set of optimal multipliers for
(CPP) is
L™ (X)) ={y":y" =y s Mayyy”, -+ Ma,y, 1),
Ve VE(®) g +M 3 o VE ) y] =
iel(x)
yie Nx|C);yr =0,i & I(X);
yi € 9g(Fi(¥)). a; €[0,1],i e Ix) U{0}}.  (13)
Proof. The proof of (11) is standard convex analysis arguments and omitted.

(12) follows from the definition of L(x). d

Using Lemmas 3.1 and 3.2, second-order optimality conditions of (P1) are
established.

THEOREM 3.1. Consider the problem (P1).
(i) If (P1) is calm at X and X is a minimizer of (P1), then L§""(X) # ¥ and

max{zyoj TDZFO,(X)M+ my o Zy* TDZF (Xu:

iel(x) j=1

v € 0gi(Fi(x))} 20, Vue Kepp(X), (14)

(i) If L§"(X) # 0, the generalized representation condition (3) holds for F,
at X with respect to K -pp(X) with the same n(x,x),i € [(x) U {0} and (13) holds,
then X is a minimizer of (P1).

Proof. (i) Since the problem (P1) is calm at X, X is a minimizer of (CPP). From
Lemma 3.2 in Yang (1998), the convex composite optimization problem (CPP)
satisfies the basic constraint qualification. Then L§?”(X) # . For y* € L§™" (%),

L(x,y") = (& x) + (055 Fo(0)) + m 3 i) @, (37, Fi(x)). Then

L°(X, y*5 u, u) = Z)’o, W' D’Fy(Xu+ m ) « Zy* "D*F;(X)u.

i€l (X) Jj=1

Thus (i) follows from Lemma 3.1 and Theorem 2.1 (ii).
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(ii) For any feasible minimizer x € A, we have for y* € L§"" (%),

g(F(x)) —g(F(x)) =2 (y*, F(x) — F(X)).

Noting that y* = (y*", y7, Ma,y;", - -+, Me,,y:")", where

Y+ VR@ e+ m Y e VE® Ty =0,

iel(x*)

279

(15)

ye € N(X|C); y; =0,i ¢ 1(X); yi € dg,(Fi(%)), ; € [0, 1], i € I(x) U {0}, thus

(¥, F(x) = F(X))

= (0, x = %) + (5, Fo(x) — Fy(0) + 32 Mo (y}, Fix) — Fi(X))
iel(x)

= (X —%)
H(VF(X) 5, x = %) + (35, n(x, x*)" D*Fy(x")m(x, x°))
+ ) Ma(VF,(X)"y!, x =)

iel(x)
+ 3 (7, n(x, %) D*F,(x)n(x, %))
iel (%)
=+ VFO(X)T)’S
+m Y e VE(®) v x—F) +
iel(x)
k
> yim(x, %) Dy (F)m(x, %)
j=1
k
+m Y a > yin(x, X) D*F(¥)n(x, %)
icl@ j=I1

k
= > vo;m(x, X D*Fy(X)n(x, %)
j=1

k
+m Y @)y D) Dy (X)n(x, %),

iel(  j=I1
where
n(x,X)" D*F; (X)n(x, X)
n(x, %) D’F,(X)n(x, %) = : ,
n(x,X)" D*Fy (X)n(x, X)



280 X. Q. YANG

N(x,X) € Keep(X).
Then from (14), for every x € A,
8(F(x)) — g(F(x))

> (", F(x) - F(®)
> Yy m(e. B DXy ()m(x. )

j=1

k
+m Y ;) yin(x, %) D*F;(X)n(x, X)

iel(®  j=1
= 0.

Then X is a minimizer of (CPP), so is a minimizer of (P1). d

4. Second-order minimizer characterizations of a convex program

This section derives second-order characterizations of the minimizer set for a con-
vex program using a generalized representation condition. Consider the convex
program

(P2) Minimize f(x)
subjectto x € C,

where C is a convex set of IR" and f : IR" — IR is a convex function. The
following first order characterization of (P2) was obtained in Mangasarian (1988).

LEMMA 4.1. Mangasarian (1988) If f is differentiable, then the minimizer set C
of (P2) is characterized by

C={xeC:f(x)=fX),(Vf(),x—%) =0},
where X is a minimizer of (P2).

We now obtain a second-order characterization of the minimizer set for (P2)
using a generalized representation condition.

THEOREM 4.1. Assume that f is twice strictly differentiable and satisfies the
generalized representation condition (3). Then

C={xeC:(Vf(),x=%) =0,(D*f(®)(n(x,)), n(x,%)) =0}. (16)

where X is a minimizer of (P2) and C is the set of minimizers.
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Proof. Let

C, = {x e C:(Vf(X), x = %) =0, (D*f()((x,5)), n(x,3)) = 0}

Suppose x € C. Then it follows from Lemma 4.1 that f(x) = f(%), (Vf(X), x —
x) = 0. Using (3), we have

f(x) = f(x) +(Vf (%), x —=%) + %(sz(f)(n(x, X)), n(x,X)).
Thus

(D*f(X)(n(x, ), n(x, X)) = 0.
Then x € C,. The converse is trivial by (3). g

Consider the convex quadratic program

1
(P3) Minimize f(x)= ExTQx +p'x
subjectto x € C,

where Q is a symmetric positive semi-definite matrix and p € IR". Recently in
Burke and Ferris (1993) the following second-order characterization of a minimizer
was obtained for the convex quadratic program (P3):

C={xeC:(Qx+p,x—%)=0,0(x —%) =0}. (17)

where X is a minimizer of (P3).

COROLLARY 4.1. Consider the convex quadratic program. Then
C={xeC:(Qx+p,x—%)=0,(x—%)"Q(x —X) =0}, (18)

where X is a minimizer of (P3).

It can be easily proved that (17) and (18) are equivalent by employing the fol-
lowing result (see Eisenberg, 1962): for an n x n symmetric positive semi-definite
matrix Q and x € IR",

if and only if

5. Second-order minimizer characterizations of a linear fractional program

In this section we present some second order minimizer characterization for the
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following linear fractional program

alx+r

(P4) Minimize f(x) = BTx 4 s

subjectto x € D,

where a,b,x € R" and r,s € R, and D; = {x € R"[b"x + 5 > 0}.

By Jeyakumar and Yang (1995), taking into account a characterization of the
solution set obtained for pseudolinear function, the following result easily follows.

LEMMA 5.1. Jeyakumar and Yang (1995) The minimizer setD_f of (P4) is char-
acterized by

D, ={xeD;: (Vf(x),x —X) =0}, (19)

where X is a minimizer of (P4).

For linear fractional functions simple calculation establishes that

a(b’x +s) —b(a"x+7)

V) = (b'X +5)?

—(a’x+r)(ab” + ba") +2(b"x + t)aa”

VI = (a"% +r)?

By Theorem 4.1 we obtain.

THEOREM 5.1. Consider the linear fractional program (P4). Then
D,={xeD,;:[(b'%)a" — (a"X)b"|x = (sa — rb)" (x — x),
[((a"x+7r)b" — (b"x+1t)a"](x — %) =0}

where X is a minimizer of (P4).
Proof. It follows from Theorem 4.1 and the generalized representation condition
(4) that

D; = {x € D;: (Vf(%),x —X) =0, (V*f (%) (n(x, X)), n(x, X)) = 0}
={xeD, : (Vf(®),x—%) =0, x =)' Vf(X)(x—%) =0}.  (20)

Thus, (Vf(X), x —X) = 0 is equivalent to

[(b"X)a" — (a"x)b"]|x = (sa — rb)" (x — x)
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and (x —X)V?f(¥)(x — X) = 0 is equivalent to
(a"x+r)(x—=%)"ab" (x —x) = (b"x + 1) (a” (x — X))*

or
[(a"x+r)b" — (b"x +1)a"](x — %) =0.

The conclusion holds. O

The following characterization was derived in Jeyakumar and Yang (1995) for
twice continuously differentiable pseudolinear functions,

D, ={xeD,: (Vf(xax),x —%) =0, Va €[0,1]}
NxeD;: (x—%)"Vf(xax)(x —X) =0, Va €[0,1]}, (21)

(where xax = ax + (1 — @)X), using a second order characterization of a pseudo-
linear function obtained in Chew and Choo (1984). It is clear that (21) includes (20)
as a special case. However, the pseudolinear function f(x) = x + %sin(x) does
not satisfy the generalized representation condition at x = 0. Hence, Theorem
5.1 gave an alternative proof for the second order characterization of a minimizer
for a linear fractional program.

6. Conclusion

We studied a second-order generalized representation condition. This condition
is applied to derive a global second-order sufficient condition for an optimization
problem with a convex composite objective and convex composite inequality
constraints and to characterize the minimizer of a convex program and a linear
fractional program.
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