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Abstract. Second-order optimality conditions are studied for the constrained optimization problem
where the objective function and the constraints are compositions of convex functions and twice
strictly differentiable functions. A second-order sufficient condition of a global minimizer is obtained
by introducing a generalized representation condition. Second-order minimizer characterizations for
a convex program and a linear fractional program are derived using the generalized representation
condition.
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1. Introduction

It is well known that the convex composite model problem includes most of non-
linear optimization problems in the literature, see Burke and Poliqun (1992), Ioffe
(1979), Jeyakumar and Yang (1993) and Rockafellar (1988). Second-order suffi-
cient conditions of a strict local minimizer for convex composite problems have
been given in Burke and Poliqun (1992) and Rockafellar (1988) by enforcing the
inequality in the necessary condition part to be a strict inequality on a larger critical
direction set. It has been shown that second-order sufficient conditions of a strict
local minimizer for nonlinear programming problems are useful in establishing
convergence properties of nonlinear programming algorithms.

The optimality conditions for a global minimizer is important, e.g., in noncon-
vex (concave) optimization, see Horst and Tuy (1990). It is known that for a convex
optimization problem any stationary point is also a global minimizer. Some first-
order global optimality conditions for (multi-objective) convex composite prob-
lems have been given in Jeyakumar and Yang (1993) by virtue of a (first-order)
representation condition. The question is how to characterize the second-order
global sufficient condition of a minimizer for a nonconvex optimization problem.
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Recently a second-order global sufficient condition has been established for a con-
vex composite optimization problemwith an extended real-valued convex function
in Yang (1998).

In this paper, second-order optimality conditions are studied for the constrained
convex composite optimization problem where the objective function and con-
straints are compositions of convex functions and twice strictly differentiable func-
tions. A second-order sufficient condition of a global minimizer for a constrained
convex composite optimization problem is given by using a generalized representa-
tion condition.We show that this generalized representation condition is also useful
in characterizing the minimizer sets for a convex program and a linear fractional
program. In particular, for a convex quadratic program, we obtain an equivalent
condition to the one given in Burke and Ferris (1993).

The outline of the paper is as follows. In Section 2, second-order optimality
conditions for a convex composite optimization problem is discussed and a gen-
eralized representation condition is also presented. In Section 3, a second-order
global sufficient condition for a constrained convex composite optimization prob-
lem is given. In Sections 4 and 5, second-order minimizer characterizations for a
convex program and a linear fractional program are derived using the generalized
representation condition, respectively.

2. Preliminary results

Let IRn denote an n-dimensional space, and �u� v� denote the inner product of
vectors u� v ∈ IRn. Let g � IRn −→ IR∪ �+�� be a lower semi-continuous convex
function. The convex conjugate of g is defined by

g∗	y∗� = sup��y∗� y� − g	y� � y ∈ IRn�� y∗ ∈ IRn�

thus
�y∗� y� � g	y�+ g∗	y∗�� ∀y ∈ dom	g�� y∗ ∈ IRn�

where dom	g� = �y ∈ IRm � g	y� < +��. The convex subdifferential of g at
y ∈ dom	g� is defined by

�g	y� = �y∗ ∈ IRn � 	y∗�−1� ∈ N	y� g	y��epi	g����

where epi	g� is the epi-graph of g, i.e.,

epi	g� = �	y��� ∈ IRn × IR � g	y� � ���

and the normal cone to convex subset epi	g� of IRn at 	y� g	y�� is defined by

N		y� g	y���epi	g�� = �z∗ ∈ IRn × IR � �z∗� z− 	y� g	y��� � 0�∀z ∈ epi	g���
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If g is finite at y and y∗ ∈ �g	y�, then

g	z� � g	y�+ �y∗� z− y�� ∀z ∈ dom	g��

Let f � IRn −→ IR be a locally Lipschitz function and let x�u� v ∈ IRn. The
(Clarke) generalized second-order directional derivative of f at x in the direc-
tions 	u� v� and the generalized Hessian of f at x with respect to u is defined in
Cominetti and Correa (1990), respectively, by

f ��	x�u� v� = lim sup
y→x�s�t↓0

f 	y + su+ tv�− f 	y + su�− f 	y + tv�+ f 	y�

st
�

�2f 	x�	u� = �x∗ ∈ IRn � f ��	x�u� v� � �x∗� v��∀v ∈ IRn��

A function f � IRn −→ IR is said to be C1�1 if it is continuously differentiable
with a locally Lipschitz gradient. See Hiriart-Urruty et al (1984) and Yang and
Jeyakumar (1992).

The function f � IRn −→ IR is said to be twice strictly differentiable at x ∈ IRn

if there exists a linear operator D2f 	x� � IRn −→ IRn such that

lim
y→x�s�t↓0

f 	y + su+ tv�− f 	y + su�− f 	y + tv�+ f 	y�

st
= �D2f 	x�u� v��

for all u� v ∈ IRn. It is clear that the correspondence between linear operators
from IRn to IRn and n× n symmetric matrices is one-to-one, see Hiriart-Urruty
et al (1984). Thus second-order strict derivative D2f 	x� of f at x is an n× n
symmetric matrix. F = 	F1� · · · �Fm� � IRn −→ IRm is said to be twice strictly
differentiable at x if each component Fi is twice strictly differentiable at x. All
linear and quadratic functions are twice strictly differentiable. A twice strictly
differentiable function is C1�1. It is clear that the generalized Hessian �2f 	x�	u�
is singleton for each u ∈ IRn if and only if f is twice strictly differentiable at x.

Consider the convex composite optimization problem

	CP� Minimize f 	x�

subjectto x ∈ IRn�

where f 	x�=g	F	x��� g � IRm−→ IR∪ �+�� is a lower semi-continuous convex
function, and F � IRn −→ IRm is continuously differentiable. If F is twice strictly
differentiable near a given point, the Jacobian of F at x,  F	x� is anm×nmatrix,
second strict derivative D2Fi	x� is an n× n matrix for each i = 1� · · · �m and
D2F	x� = 	D2F1	x�

T � · · · �D2Fm	x�
T �T .
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As in Burke and Poliquin (1992), let

L	x� y∗� = �y∗�F 	x�� − g∗	y∗�� y∗ ∈ dom	g∗��
K	x� = �u ∈ IRn � g	F	x�+ t F	x�u� � g	F	x��� forsome t > 0��

L0	x� = �y∗ ∈ IRm � y∗ ∈ �g	F	x��� F	x�T y∗ = 0��

L0	x� is known as the set of optimal multipliers andK	x� is the critical cone. Note
that L	x� y∗� is continuously differentiable as a function of x.

The function f 	x� = g	F	x�� is said to satisfy the basic constraint quali-
fication at a point x satisfying F	x� ∈ dom	g� (Rockafellar (1988)) if the only
point w ∈ N	F	x��dom	g�� for which 0 ∈ wT�F	x� is w = 0, and �F	x� is the
generalized Jacobian of F at x, see Clarke (1983). We see that L0	x� is compact
and that if x satisfying F	x� ∈ dom	g� is a local minimizer of (CP) at which
the basic constraint qualification holds, then L0	x� �= ∅ (see Burke and Poliquin
(1992)).

The following are second-order necessary conditions for (CP). See Yang (1998).

THEOREM 2.1. Consider the problem (CP). Let F	x� ∈ dom	g�. If F is continu-
ously differentiable and x is a local minimizer of (CP) at which the basic constraint
qualification holds, then L0	x� �= ∅ and

max�L��	x� y∗� u�u� � y∗ ∈ L0	x�� � 0� ∀u ∈ K	x�� (1)

Furthermore if F is twice strictly differentiable at x, then

max�
n∑
i=1

y∗i u
TD2Fi	x�u � y

∗ ∈ L0	x�� � 0� ∀u ∈ K	x�� (2)

The following generalized representation condition can be used to establish a
second-order sufficient condition of a global minimizer.

DEFINITION 2.1. Let M ⊂ IRn be a set and F � IRn −→ IRk be twice strictly
differentiable at x. We say that a generalized representation condition holds for
F at x with respect to M if for every x ∈ Rn, there exists )	x�x� ∈M such that

F	x� = F	x�+  F	x�	x− x�+ 1
2
)	x�x�TD2F	x�)	x�x� (3)

where

)	x�x�TD2F	x�)	x�x� =


)	x�x�TD2F1	x�)	x�x�

���
)	x� x�TD2Fk	x�)	x�x�


 �
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PROPOSITION 2.1. LetM1 ⊂M2. If (3) holds for F at x with respect toM1, then
the generalized representation condition (3) holds for F at x with respect to M2.

The following propositions summary properties of the generalized represent-
ation condition (3) (see Yang (1998)) and will be used in the sequel to establish
solution characterizations for quadratic programming and linear fractional pro-
gramming problems.

PROPOSITION 2.2. Any quadratic function satisfies the generalized representa-
tion condition (3).
Proof. See Example 3.3 in Yang (1998).

PROPOSITION 2.3. Any linear fractional function satisfies the generalized rep-
resentation condition (3).
Proof. Let

f 	x� = aTx+ r

bTx+ s

where a�b� x∈ IRn and r� s∈R satisfying bTx+ s >0. FromYang (1998), we have

f 	x� = f 	x�+ f	x�T 	x−x�+ 1
2
bTx+ s

bTx+ s
	x−x�T 2f 	x�	x−x�� x� x ∈ Df �

Let

)	x�x� =
√
bTx+ s

bTx+ s
	x− x�� (4)

Then the generalized representation condition (3) is satisfied.

3. A second-order global sufficient condition

In this section we obtain second-order optimality conditions of a constrained op-
timization problem where the objective function and the constraints are composi-
tions of convex functions and twice strictly differentiable functions by transforming
it into a convex composite optimization problem.

Let C be a closed convex set of IRn, gi � IR
k −→ IR� i = 0�1� · · · �m be convex

functions, Fi = 	Fi1� · · · �Fik�T � IRn −→ IRk� i = 0�1� · · · �m be twice strictly
differentiable functions. Let

A = �x � x ∈ C�gi	Fi	x�� � 0� i = 1� · · · �m��
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Consider the following optimization problem

	P1� Minimize g0	F0	x��

subject to x ∈ A�

The first-order optimality conditions for the problem (P1) where Fi is Gateaux
differentiable only have been derived in Jeyakumar and Yang (1993).

The Slater constraint qualification of (P1) is said to hold if

∃x0 ∈ intC� gi	Fi	x0�� < 0� i = 1� · · · �m� (5)

Problem (P1) is said to be calm at a point x if there existsM > 0 such that for any
uk = 	uk�1� � � � � uk�m� ∈ IRm

+ with �uk� → 0+ (namely, �uk� �= 0 and �uk� → 0�,
for any xk satisfying gi	Fi	xk�� � uk�i� i = 1� � � � �m and xk → x� there holds

f̄ 	xk�− f̄ 	x�

�uk�
+ M � 0�∀k�

where f̄ = g0	F0	x��.
From Corollary 2 in page 238 of Clarke (1983) and from Proposition 6.4.2 again

in Clarke (1983) it follows that ifC is bounded and (5) holds, then the problem (P1)
is calm at aminimizer. Suppose that x is aminimizer of (P1) and the problem (P1) is
calm at x. By Proposition 6.4.3 in Clarke (1983), there existsM > 0 such that x is
a minimizer of the optimization problem

Minimize f0	x�

subject to x ∈ C�

where f0	x� = g0	F0	x��+ M
∑m

i=1 max�0� gi	Fi	x����
Let

D = C × IRk × IRk × · · · × IRk� (6)

g	z� = g	x� z0� z1� · · · � zm�
=

{
g0	z0�+ M

∑m
i=1 max�0� gi	zi��� z ∈ D�

+�� otherwise�
(7)

F	x� = 	xT �F0	x�
T �F1	x�

T � · · · �Fm	x�T �T � x ∈ IRn� (8)

Then f0	x� = g	F	x��� From the convexity of gi and the monotonicity of
m	r� = max�0� r� as a function of r , it is easy to see that g is a lower semi-
continuous convex function with dom	g� = D. The function F is twice strictly
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differentiable. Then the problem (P1) is formulated as a convex composite optim-
ization problem (CP) with g and F defined by (6)-(8). This composite problem is
denoted by (CPP). Let KCPP	x� be the critical cone of (CPP). We have  F	x� =
	In×n� F0	x�

T � F1	x�
T � · · · � Fm	x�T �T �

LEMMA 3.1. Let x ∈ A. Then
KCPP	x� = �u ∈ cone	C − x� � ∀i ∈ I	x�∪ �0��

∃vi ∈ �gi	Fi	x��� vTi  Fi	x�u � 0�� (9)

where I	x� = �i � gi	Fi	x�� = 0� i = 1� · · · �m� is the active constraint index set.
Proof. The vector u ∈ KCPP	x� if and only if

g	F	x�+ t F	x�u� � g	F	x��� forsome t > 0�

thus

g	x+ tu�F0	x�+ t F0	x�u�F1	x�+ t F1	x�u� · · · �
Fm	x�+ t Fm	x�u� � g	x�F0	x��F1	x�� · · · �Fm	x���

Then u ∈ cone	C − x� and

g0	F0	x�+ t F0	x�u�− g0	F0	x��

+ M
m∑
i=1

max�0� gi	Fi	x�+ t Fi	x�u�� � 0� for some t > 0�

This is equivalent to

u ∈ cone	C − x��

g0	F0	x�+ t F0	x�u�− g0	F0	x�� � 0� (10)

max�0� gi	Fi	x�+ t Fi	x�u�� � 0� ∀i ∈ I	x�� (11)

From the convexity of g0, there exists v0 ∈ �g0	F0	x�� such that

tvT0  F0	x�u � g0	F0	x�+ t F0	x�u�− g0	F0	x���

Thus (10) is equivalent to

vT0  F0	x�u � 0� ∃v0 ∈ �g0	F0	x���

By the same arguments, (11) is equivalent to

vTi  Fi	x�u � 0� ∃vi ∈ �gi	Fi	x���∀i ∈ I	x��

Hence (9) holds. �
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LEMMA 3.2. Let x ∈ A. The following holds

�g	F	x�� = N	x�C�× �g0	F0	x��×1i�I	x��0�×
1i∈I	x��M�iy

∗
i � y

∗
i ∈ �gi	Fi	x����i ∈ 20�13�� (12)

where× is the product of sets in a product space. The set of optimal multipliers for
(CPP) is

LCPP
0 	x� = �y∗ � y∗ = 	y∗Tc � y∗T0 �M�1y

∗T
1 � · · · �M�my

∗T
m �T �

y∗c +  F0	x�
T y∗0 +M

∑
i∈I	x�

�i Fi	x�
T y∗i = 0�

y∗c ∈ N	x�C�� y∗i = 0� i � I	x��

y∗i ∈ �gi	Fi	x����i ∈ 20�13� i ∈ I	x�∪ �0��� (13)
Proof. The proof of (11) is standard convex analysis arguments and omitted.

(12) follows from the definition of L0	x�. �

Using Lemmas 3.1 and 3.2, second-order optimality conditions of (P1) are
established.

THEOREM 3.1. Consider the problem (P1).
(i) If (P1) is calm at x and x is a minimizer of (P1), then LCPP

0 	x� �= ∅ and

max�
k∑
j=1

y∗0ju
TD2F0j	x�u + m

∑
i∈I	x�

�i

k∑
j=1

y∗iju
TD2Fij	x�u �

y∗i ∈ �gi	Fi	x��� � 0� ∀u ∈ KCPP	x�� (14)

(ii) If LCPP
0 	x� �= ∅, the generalized representation condition (3) holds for Fi

at x with respect to KCPP	x� with the same )	x�x�� i ∈ I	x�∪ �0� and (13) holds,
then x is a minimizer of (P1).
Proof. (i) Since the problem (P1) is calm at x, x is a minimizer of (CPP). From

Lemma 3.2 in Yang (1998), the convex composite optimization problem (CPP)
satisfies the basic constraint qualification. Then LCPP

0 	x� �= ∅. For y∗ ∈ LCPP
0 	x�,

L	x� y∗� = �y∗c � x� + �y∗0�F0	x�� + m
∑

i∈I	x∗� �i�y∗i � Fi	x��� Then

L��	x� y∗� u�u� =
k∑
j=1

y∗0ju
TD2F0j	x�u+ m

∑
i∈I	x�

�i

k∑
j=1

y∗iju
TD2Fij	x�u�

Thus (i) follows from Lemma 3.1 and Theorem 2.1 (ii).
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(ii) For any feasible minimizer x ∈ A, we have for y∗ ∈ LCPP
0 	x�,

g	F	x��− g	F	x�� � �y∗�F 	x�− F	x��� (15)

Noting that y∗ = 	y∗Tc � y∗T0 �M�1y
∗T
1 � · · · �M�my

∗T
m �T � where

y∗c +  F0	x�
T y∗0 + m

∑
i∈I	x∗�

�i Fi	x�
T y∗i = 0�

y∗c ∈ N	x�C�� y∗i = 0� i � I	x�� y∗i ∈ �gi	Fi	x����i ∈ 20�13� i ∈ I	x�∪ �0�, thus
�y∗�F 	x�− F	x��

= �y∗c � x− x� + �y∗0�F0	x�− F0	x�� +
∑
i∈I	x�

M�i�y∗i � Fi	x�− Fi	x��

= �y∗c � x− x�
+� F0	x�

T y∗0� x− x� + �y∗0�)	x� x∗�TD2F0	x
∗�)	x�x∗��

+ ∑
i∈I	x�

M�i� Fi	x�T y∗i � x− x�

+ ∑
i∈I	x�

�i�y∗i � )	x� x�TD2Fi	x
∗�)	x�x��

= �y∗c +  F0	x�
T y∗0

+ m
∑
i∈I	x�

�i Fi	x�
T y∗i � x− x� +

k∑
j=1

y∗0j)	x� x�
TD2F0j	x�)	x�x�

+ m
∑
i∈I	x�

�i

k∑
j=1

y∗ij)	x� x�
TD2Fij	x�)	x�x�

=
k∑
j=1

y∗0j)	x� x�
TD2F0j	x�)	x�x�

+ m
∑
i∈I	x�

�i

k∑
j=1

y∗ij)	x� x�
TD2Fij	x�)	x�x��

where

)	x�x�TD2Fi	x�)	x�x� =


)	x�x�TD2Fi1	x�)	x�x�

���
)	x� x�TD2Fik	x�)	x�x�


 �
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)	x�x� ∈ KCCP	x��

Then from (14), for every x ∈ A,
g	F	x��− g	F	x��

� �y∗�F 	x�− F	x��

�

k∑
j=1

y∗0j)	x� x�
TD2F0j	x�)	x�x�

+ m
∑
i∈I	x�

�i

k∑
j=1

y∗ij)	x� x�
TD2Fij	x�)	x�x�

� 0�

Then x is a minimizer of (CPP), so is a minimizer of (P1). �

4. Second-order minimizer characterizations of a convex program

This section derives second-order characterizations of the minimizer set for a con-
vex program using a generalized representation condition. Consider the convex
program

	P2� Minimize f 	x�

subjectto x ∈ C�
where C is a convex set of IRn and f � IRn −→ IR is a convex function. The
following first order characterization of (P2) was obtained in Mangasarian (1988).

LEMMA 4.1. Mangasarian (1988) If f is differentiable, then the minimizer set C
of (P2) is characterized by

C = �x ∈ C � f 	x� = f 	x�� � f	x�� x− x� = 0��

where x is a minimizer of (P2).

We now obtain a second-order characterization of the minimizer set for (P2)
using a generalized representation condition.

THEOREM 4.1. Assume that f is twice strictly differentiable and satisfies the
generalized representation condition (3). Then

C = �x ∈ C � � f	x�� x− x� = 0� �D2f 	x�	)	x�x���)	x�x�� = 0�� (16)

where x is a minimizer of (P2) and C is the set of minimizers.
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Proof. Let

C1 = �x ∈ C � � f	x�� x− x� = 0� �D2f 	x�	)	x�x���)	x�x�� = 0�

Suppose x ∈ C. Then it follows from Lemma 4.1 that f 	x� = f 	x�� � f	x�� x−
x� = 0� Using (3), we have

f 	x� = f 	x�+ � f	x�� x− x� + 1
2
�D2f 	x�	)	x�x���)	x�x���

Thus
�D2f 	x�	)	x�x���)	x�x�� = 0�

Then x ∈ C1. The converse is trivial by (3). �

Consider the convex quadratic program

	P3� Minimize f 	x� = 1

2
xTQx+ pTx

subjectto x ∈ C�
where Q is a symmetric positive semi-definite matrix and p ∈ IRn. Recently in
Burke and Ferris (1993) the following second-order characterization of aminimizer
was obtained for the convex quadratic program (P3):

C = �x ∈ C � �Qx+ p�x− x� = 0�Q	x− x� = 0�� (17)

where x is a minimizer of (P3).

COROLLARY 4.1. Consider the convex quadratic program. Then

C = �x ∈ C � �Qx+ p�x− x� = 0� 	x− x�TQ	x− x� = 0�� (18)

where x is a minimizer of (P3).

It can be easily proved that (17) and (18) are equivalent by employing the fol-
lowing result (see Eisenberg, 1962): for an n×n symmetric positive semi-definite
matrix Q and x ∈ IRn,

xTQx = 0

if and only if
Qx = 0�

5. Second-orderminimizer characterizations of a linear fractional program

In this section we present some second order minimizer characterization for the
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following linear fractional program

	P4� Minimize f 	x� = aTx+ r

bTx+ s

subjectto x ∈ Df�

where a�b� x ∈ Rn and r� s ∈ R, and Df = �x ∈ Rn�bTx+ s > 0�.

By Jeyakumar and Yang (1995), taking into account a characterization of the
solution set obtained for pseudolinear function, the following result easily follows.

LEMMA 5.1. Jeyakumar and Yang (1995) The minimizer set Df of (P4) is char-
acterized by

Df = �x ∈ Df � � f	x�� x− x� = 0�� (19)

where x is a minimizer of (P4).

For linear fractional functions simple calculation establishes that

 f	x� = a	bTx+ s�− b	aTx+ r�

	bTx+ s�2

 2f 	x� = −	aTx+ r�	abT + baT �+ 2	bTx+ t�aaT

	aTx+ r�3
�

By Theorem 4.1 we obtain.

THEOREM 5.1. Consider the linear fractional program (P4). Then

Df = �x ∈ Df � 2	b
Tx�aT − 	aTx�bT 3x = 	sa− rb�T 	x− x��

2	aTx+ r�bT − 	bTx+ t�aT 3	x− x� = 0�

where x is a minimizer of (P4).
Proof. It follows from Theorem 4.1 and the generalized representation condition

(4) that

Df = �x ∈ Df � � f	x�� x− x� = 0� � 2f 	x�	)	x�x���)	x�x�� = 0�

= �x ∈ Df � � f	x�� x− x� = 0� 	x− x�T 2f 	x�	x− x� = 0�� (20)

Thus, � f	x�� x− x� = 0 is equivalent to

2	bTx�aT − 	aTx�bT 3x = 	sa− rb�T 	x− x�
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and 	x− x� 2f 	x�	x− x� = 0 is equivalent to

	aTx+ r�	x− x�TabT 	x− x� = 	bTx+ t�	aT 	x− x��2

or

2	aTx+ r�bT − 	bTx+ t�aT 3	x− x� = 0�

The conclusion holds. �

The following characterization was derived in Jeyakumar and Yang (1995) for
twice continuously differentiable pseudolinear functions,

Df = �x ∈ Df � � f	x�x�� x− x� = 0� ∀� ∈ 20�13�
∩�x ∈ Df � 	x− x�T 2f 	x�x�	x− x� = 0� ∀� ∈ 20�13�� (21)

(where x�x = �x+ 	1−��x), using a second order characterization of a pseudo-
linear function obtained in Chew and Choo (1984). It is clear that (21) includes (20)
as a special case. However, the pseudolinear function f 	x� = x+ 1

2 sin	x� does
not satisfy the generalized representation condition at x = 0. Hence, Theorem
5.1 gave an alternative proof for the second order characterization of a minimizer
for a linear fractional program.

6. Conclusion

We studied a second-order generalized representation condition. This condition
is applied to derive a global second-order sufficient condition for an optimization
problem with a convex composite objective and convex composite inequality
constraints and to characterize the minimizer of a convex program and a linear
fractional program.
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